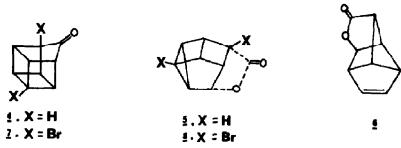

A SYNTHETIC ENTRY INTO TETRACYCLO (4.2.0.0^{2,4}.0^{3,8}) OCTANE SYSTEM


Goverdhan Mehta* and Suresh Chander Suri School of Chemistry, University of Hyderabad, Hyderabad 500134, INDIA

Summary: Novel ceric ion oxidation of homocubanone provides a facile entry into tetracyclo(4.2.0.0^{2,4}.0^{3,8})octane and tricyclo (3.3.0.0^{2,7})octane ring systems.

An interesting rearrangement of the tetracyclo(4.2.0.0 $^{2,5}.0^{4,7}$)octan-3-ol (secocubyl) mesylate $\underline{1}$ to the novel tetracyclo(4.2.0.0 $^{2,4}.0^{3,8}$)octan-5-acetate $\underline{2}$ during acetolysis has been described by Dauben and Reitman¹. In the accompanying communication, we have delineated² a general carbonium ion rearrangement of the secocubyl cation and further shown³ that the tetracyclic acetate $\underline{2}$

should be reformulated as bishomoprismane acetate $\underline{3}$. Thus, a direct synthetic entry to the interesting tetracyclic frame $\underline{2}$ remains unknown⁴. We describe here a simple synthesis of the tetracyclo(4.2.0.0^{2.4}.0^{3.8})octane system via ceric ion oxidation of homocubanone $\underline{4}$ and 1.4-dibromohomocubanone $\underline{7}$. Reaction of $\underline{4}$ with ceric ammonium nitrate (CAN) in aq. CH₃CN (0-5°, 30 min) yielded two novel lactonic products along with some polar intractable material. Structures $\underline{5}$ and $\underline{6}$ for the two products were deduced from the following

spectral data: $\underline{5}$ (16% yield), mp.45°, \underline{M}^+ 148, IR(KBr): 1770 cm⁻¹($\underline{\gamma}$ -lactone); ¹H NMR (CDCl₃, 100 MHz): $\underline{\delta}$ 5.76(1H,d st, J=8Hz,HC=OC=O), 3.38(2H,m,ring CH's),

3.04(1H,m,ring CH), 2.74(2H,m,ring CH's), 2.16(2H,m,cyclopropane CH's); 13 c $NMR(CDCl_3, 25MHz)$: $\delta 177.3(s)$, 88.6(d), 47.3(d), 39.9(d), 37.6(d), 34.2(d), 29.6(d)29.4(d), 19.1(d); 6 (6% yield), low melting waxy solid, M+ 148, IR(KBr): 1780 cm⁻¹(γ -lactone); ¹H NMR (CDCl₃, 100MHz): δ 6.38(1H,m,olefinic), 5.94(1H,m, olefinic), 4.36(1H,s,HC-OC=O), 2.6-3.4(5H,m,ring CH's); ¹³C NMR (CDCl₃,25MHz): δ175.4(s), 137.5(d), 133.1(d), 83.1(d), 56.7(d), 49.6(d), 48.7(d), 46.0(d), 41.2(d). When 1.4-dibromohomocubanone 7 was subjected to ceric ion oxidation, the tetracyclic lactone 8, mp.128-29°, IR(KBr): 1760 cm⁻¹(Y-lactone); ¹H NMR (CDCl₃,100MHz): **8** 5.68(1H,d,J=8Hz), 3.0-3.8(4H,m), 2.88(1H,t,J=4Hz); ¹³C NMR (CDCl₃, 25MHz): **§** 172.6, 88.5, 54.4, 50.4, 44.9, 44.3, 38.2, 36.4, 28.3; was formed (15%) regiospecifically along with other highly polar products. In addition to the above spectral data H NMR spin-decoupling and LIS studies provided further supportive evidence for structures 5, 6 and 8.

The mechanism for the formation of lactones 5 and 8 is depicted in Scheme I. The rearrangement of the secocubyl cation to the tetracyclo(3.3.0. $0^{2,8}.0^{3,6}$) octyl cation <u>10</u> is intercepted in the present case by the dangling $C_{\rm g}$ -endo-carboxylic acid group in $\underline{9}$. However, a competing escape route from the ion $\underline{9}$ leads to the formation of unsaturated lactone $\underline{6}$. The formation of tetracyclo($4.2.0.0^{2,4}.0^{3,8}$) octane based lactones 5 and 8 in the present study constitutes the first authentic entry to this novel and compact ring system.

Acknowledgement: We wish to thank SERC. Department of Science and Technology for support of this research.

- References and Notes:
 1. W.G. Dauben and L.N. Reitman, J. Org. Chem., 40, 835 (1975).
- 2. G. Mehta and S.C. Suri, Tetrahedron Letts., accompanying communication.
- 3. C.W. Jefford, J.C. Rossier, J.A. Zuber, S.C. Suri and G. Mehta, manuscript under preparation.
- 4. A polymethyl derivative bearing the skeleton of $\underline{2}$ has been mentioned as a byproduct in a photochemical study, H. Hart and M. Kuzuya, Tetrahedron Letts., 1913 (1974).

(Received in UK 15 July 1980)